Jiahan Chen

◇ Tel: +86 15596171527

INTERESTS Quantum Information Theory, Quantum Error Correction, Artificial Intelligence EDUCATION M.S. in Computer Science and Technology 09/2022 - Present Harbin Institute of Technology, Shenzhen Research focus: Quantum Error Correction, advised by Prof. Xuan Wang GPA: 3.3/4.0 **B.S.** in Computer Science and Technology Xi'an Jiaotong University GPA: 3.5/4.3

ACADEMIC EXPERIENCES

Designing Competitive Belief Propagation Decoding for Surface Codes 10/2023 - 02/2025 Master's degree project

- · Improved BP's message update rules and initial probabilities inspired by gradient optimization.
- · Added correlated belief to enhance the prior, made it directly adapt to detector error model.
- · Achieved a 1 to 3 orders of magnitude improvement in accuracy without post-processing, under both code capacity and circuit-level noise models, while enabling constant-cost parallel implementation

Implementation and Analysis of Quantum Discrete Adiabatic Algorithm for Solving Linear Systems in the NISQ Era 05/2024 - 07/2024

From 3rd CCF "Pilot Cup" General Track

♦ Email: jiahanchen527@gmail.com

- Implemented the quantum discrete adiabatic algorithm for arbitrary matrices based on LCU block encoding and qubitization, achieving a 99.99% state fidelity in the test case
- · Analyzed the algorithm's inherent noise resilience under a simplified noise model, and assessed the requirements and overhead for quantum error correction

Designing High-dimensional Quantum XYZ Product Codes for Biased Noise 03/2024 - 07/2024 Research within Computer Application Research Center

- · Utilized the chain complex to generalize the construction of 3D product codes, proposing 4D XYZ product constructions using either four classical codes or two CSS codes
- · Simulated and compared the performance of 4D XYZ product codes under Z-biased noise, showing superior error-correcting capability compared to CSS codes from 4D homological product

Designing Tanner-Graph-Recursive-Expansion Code with High Rate

Research within Computer Application Research Center

- · Constructed high-rate XZ-TGRE codes through Tanner graph recursive expansion
- · Applied hypergraph product and concatenation to TGRE codes, achieving high code rate and error-correction capability under biased noise, separately

09/2018 - 06/2022

♦ ORCID: 0009-0002-9717-3647

11/2023 - 02/2024

PUBLICATIONS

Zhengzhong Yi, Zhipeng Liang, **Jiahan Chen**, Kaixin Zhong, Et al., *Improved belief propagation decoding algorithm based on decoupling representation of Pauli operators for quantum stabilizer codes*, Quantum Information Processing, 2025.

Zhengzhong Yi, Zhipeng Liang, Zicheng Wang, **Jiahan Chen**, Et al., *Recursive expansion of Tanner graph: a method to construct stabilizer codes with high coding rate*, Physical Review A, 2024, 110(3): 032425.

Jiahan Chen, Zhengzhong Yi^{*}, Zhipeng Liang, and Xuan Wang, *Improved Belief Propagation Decoding Algo*rithms for Surface Codes, arXiv:2407.11523 (IEEE Transactions on Quantum Engineering, under revision)

Zhipeng Liang, Zhengzhong Yi, Fusheng Yang, **Jiahan Chen**, Et al., *High-dimensional quantum XYZ product codes for biased noise*, arXiv:2408.03123

Jiahan Chen, Shuhan Qi^{*}, Yifan Li, Zeyu Dong, Et al., *KnobTree: Intelligent Database Parameter Configuration via Explainable Reinforcement Learning*, arXiv:2406.15073

HONORS

First-Class Graduate Scholarship	2023, 2022
Second Prize (6th Place out of 306 teams) in the 3rd CCF "Pilot Cup" General Track	2024
Second Prize (2nd Place overall) in the 2nd SpinQ Cup Quantum Computing Challenge	2023
Excellence Award (6th Place overall) in the Tencent Kaiwu AI Open Competition	2023
Outstanding League Cadres	2023

OTHER EXPERIENCES

Open-Source Project - QEC Decoding Experiment Framework	08/2024 - 10/2024
Independently Developed	

• Implemented a framework for comparison of the performance of different error correction codes and decoding algorithms, supporting code capacity noise, phenomenological noise, and circuit-level noise model.

 \cdot Developed and optimized BP decoding on GF(2) and GF(4) in C++, integrated error correction codes and decoding algorithms studied by the research group, provided interfaces for adding new classes, and open-sourced the project on GitHub.

Teaching Assistant	
· Theory of computation	Fall, 2023
\cdot Network and system security	$Spring, \ 2023$

SKILLS

Basics	Quantum Computation and Quantum Information (Nielsen and Chuang), Machine Learning
$\mathbf{Utilities}$	Python (NumPy, PyTorch, QPanda), C++, MATLAB, LaTeX
Language	English (IELTS 7.0), Mandarin (native)