Fundamental limitations on optimization in variational quantum algorithms

Abstract

Exploring quantum applications of near-term quantum devices is a rapidly growing field of quantum information science with both theoretical and practical interests. A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs). These algorithms use a classical optimizer to train a parameterized quantum circuit to accomplish certain tasks, where the circuits are usually randomly initialized. In this work, we prove that for a broad class of such random circuits, the variation range of the cost function via adjusting any local quantum gate within the circuit vanishes exponentially in the number of qubits with a high probability. This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs. Hence a fundamental limitation on the trainability of VQAs is unraveled, indicating the essential mechanism of the optimization hardness in the Hilbert space with exponential dimension. We further showcase the validity of our results with numerical simulations of representative VQAs. We believe that these results would deepen our understanding of the scalability of VQAs and shed light on the search for near-term quantum applications with advantages.

Publication
arXiv:2205.05056
Chengkai Zhu
Chengkai Zhu
PhD Student

I obtained my BS in Applied Mathematics from China Agricultural University under the supervision of Prof. Zhencai Shen. I obtained my MS degree in Cyberspace Security from University of Chinese Academy of Sciences under the supervision of Prof. Zhenyu Huang. My research interests include quantum information theory and quantum computation.

Xin Wang
Xin Wang
Associate Professor

Prof. Xin Wang founded the QuAIR lab at HKUST(Guangzhou) in June 2023. His research primarily focuses on better understanding the limits of information processing with quantum systems and the power of quantum artificial intelligence. Prior to establishing the QuAIR lab, Prof. Wang was a Staff Researcher at the Institute for Quantum Computing at Baidu Research, where he concentrated on quantum computing research and the development of the Baidu Quantum Platform. Notably, he spearheaded the development of Paddle Quantum, a Python library designed for quantum machine learning. From 2018 to 2019, Prof. Wang held the position of Hartree Postdoctoral Fellow at the Joint Center for Quantum Information and Computer Science (QuICS) at the University of Maryland, College Park. He earned his doctorate in quantum information from the University of Technology Sydney in 2018, under the guidance of Prof. Runyao Duan and Prof. Andreas Winter. In 2014, Prof. Wang obtained his B.S. in mathematics (with Wu Yuzhang Honor) from Sichuan University.